Statistical Physics in a Finite Volume with Absolute Conservation Laws
نویسنده
چکیده
Recursion relations are used to exactly calculate the partition function of a canonical ensemble in which all additive charges as well as the total isospin are strictly conserved. The ensemble can consist of particles that obey either classical or quantum statistics. Recursion relations are also employed to compute observables such as multiplicity distributions and isospin fluctuations.
منابع مشابه
A new total variation diminishing implicit nonstandard finite difference scheme for conservation laws
In this paper, a new implicit nonstandard finite difference scheme for conservation laws, which preserving the property of TVD (total variation diminishing) of the solution, is proposed. This scheme is derived by using nonlocal approximation for nonlinear terms of partial differential equation. Schemes preserving the essential physical property of TVD are of great importance in practice. Such s...
متن کاملOn maximum-principle-satisfying high order schemes for scalar conservation laws
We construct uniformly high order accurate schemes satisfying a strict maximum principle for scalar conservation laws. A general framework (for arbitrary order of accuracy) is established to construct a limiter for finite volume schemes (e.g. essentially non-oscillatory (ENO) or weighted ENO (WENO) schemes) or discontinuous Galerkin (DG) method with first order Euler forward time discretization...
متن کاملADER schemes and high order coupling on networks of hyperbolic conservation laws
In this article we present a method to extend high order finite volume schemes to networks of hyperbolic conservation laws with algebraic coupling conditions. This method is based on an ADER approach in time to solve the generalized Riemann problem at the junction. Additionally to the high order accuracy, this approach maintains an exact conservation of quantities if stated by the coupling cond...
متن کاملNumerical Investigation on Compressible Flow Characteristics in Axial Compressors Using a Multi Block Finite Volume Scheme
An unsteady two-dimensional numerical investigation was performed on the viscous flow passing through a multi-blade cascade. A Cartesian finite-volume approach was employed and it was linked to Van-Leer's and Roe's flux splitting schemes to evaluate inviscid flux terms. To prevent the oscillatory behavior of numerical results and to increase the accuracy, Monotonic Upstream Scheme for Conservat...
متن کاملMulti-level Monte Carlo finite volume methods for nonlinear systems of conservation laws in multi-dimensions
We extend the Multi-Level Monte Carlo (MLMC) algorithm of [19] in order to quantify uncertainty in the solutions of multi-dimensional hyperbolic systems of conservation laws with uncertain initial data. The algorithm is presented and several issues arising in the massively parallel numerical implementation are addressed. In particular, we present a novel load balancing procedure that ensures sc...
متن کامل